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1ntroduction 

A process common to ail aspects of urban and regional social-economic 
systems is growth, a generic construct that encompasses both increase 
and decline. Growth is a highly complex phenomenon that may manifest 
itself in a variety of specific types. Nevertheless, ail forms of growth 
do have certain common characteristics. Boulding [5] has attempted to 
make these commonalities explicit in his three-fold classification of 
growth phenomena: (1) simple growth, (2) population growth, and (3) 
structural growth. This classification may be generalized further by 
distinguishing between absolute growth and relative growth. 

Both simple growth and population growth are forms of absolute 
growth, as they deal with the accretion or depletion of some quantity 
over time. The primary goal of the analysis of absolute growth is that 
of finding a law of growth that will express the size of the growing 
variable as a function of time. Relative or structural growth, in con­
trast, involves time-independent changes in the relationships (generally 
those of a spatial nature but, by extension, sometimes including aspatial 
ones) of the elements of a system. Stated another way, relative growth 
involves differential morphological development. Since the three classes 
of growth identified by Boulding are not mutually exclusive, relative 
growth necessarily involves accretion or depletion over time. Time­
dependent magnitude is not a primary concern, however, as it is not a 
basis for understanding the long-run structural evolution of a system. 

A major portion of research involving demographic trends and 
economic development has been concerned with absolute growth. The 
more fundamental aspect of the growth of a region or an urban area, 
however, may be its relative growth, the time-independent structural 
changes in the relationships of its elements, both spatial and non-spa­
tial. It is the goal of this paper to explore some of the implications for 
regional analysis of the theory of allometry, a tool for the investigation 
of differential morphological development. Major emphasis is placed 
upon the expansion of the conceptual basis for the application (and, 
thus, for the utility) of allometry in regional studies. The examples 
employed are simple ones and are intended to illustrate the broad ap­
plicability of allometry, rather than to provide definitive analyses of the 
data. 

Definition 

Broadly defined, allometry refers to the study of size and its conse­
quences, and relates the differences in proportions of one component of 
a system to changes in either the absolute magnitude of the system or a 
second component of the system. 1 

IThe most comprehensive discussion of the theory of allometry is 
provided by Gould [14]. 
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The principle of allometry dates at least as far back as Galileo (ca. 
1638), but received its first formai Interpretation by biologists in the 
mid-nineteenth century [3, p. 164). Modern interest in allometry in 
biology and other fields is a direct consequence of Sir Julian Huxley's 
work in the 1930s. The Iiterature of biology and of other fields [4; 22) 
contains numerous cases of documentation of the manner in which both 
organic and inorganic systems grow so as to yield a change in propor­
tions. 

The change in proportions or in the shape of a system is required 
by elementary geometry, specifically by the area-volume relationship. 
Note that this statement is to a large extent a "short-eut" rationale and 
should not be taken to imply that size increase is the efficient cause of 
shape alteration [14, p. 588). If geometrical similarity is maintained 
with size increase, any series of objects will exhibit continually decreas­
ing ratios of surface area to volume. Area varies as the second power 
of length, and volume varies as the third power. Constant area-to­
volume ratios, an adaptive necessity for many organic relationships, can 
only be maintained by altering shape. 

Con si der the growth of a hypothetical cube-shaped organism in 
which one unit of surface area is required to furnish the necessary 
food, Iight, and air to support each unit of volume. If the proportions 
of the system remain constant, an increase in system size would cause 
the volume to exceed surface area at sorne point, since volume increases 
as the third power of length, and area as the second power; at this 
point the growth of the system must stop, as the surface is no longer 
able to act as an adequate interface between the organism and the 
environment. As illustrated in Table 1, area exceeds volume until the 
si de length of such a cube is equal to six. 1n order for the organism 
to grow to a larger size, area must be allowed to increase more rapidly 
than volume. This requires that the basic dimensional relations and, 
thus, the geometry of the system be altered. If it were to continue its 
growth, the organism could no longer retain its cubic shape but would 
necessarily become convoluted or "bumpy". 

Table 1 

HYPOTHETICAL ORGANISM IN CUBIC FORM 

Side Length Area Volume Circumference 

1 6 1 4 
2 24 8 8 
3 54 27 12 
4 96 64 16 
5 150 125 20 
6 216 216 24 
7 294 343 28 

The basic allometric relationship is described by a power function 
which has come to be known as the "allometric equation": 

y = bxa 

or its equivalent form, 

log y = log b + a log x 

where x represents the size of the entire system, or a portion of that 
system that is being used as a frame of reference; y is the size of a 
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particular element of that system; b is the y intercept when log x 
equals zero; and a is the exponent, the coefficient that relates the 
amount of change in log y per unit change in log x. 2 

Sorne authors, including D'Arcy Thompson [29), argue that the use 
of the logarithmic power function is inappropriate and that many of the 
trends described by it are equally weil rendered by linear regressions. 
The power function, however, has been used almost exclusively, as it 
combines an adequate statistical fit with simplicity and interpretability 
[14, p. 596). Further, since growth is multiplicative in the general 
sense that what is produced by growth is itself normally capable of 
growing, it is reasonable to compare growth on a logarithmic scale 
where addition of units represents a multiplicative effect [15, p. 281). 

On the basis of the value assumed by the exponent, three cate­
gories of allometry can be distinguished. The first category is that of 
positive allometry. This means that y has a differentially large increase 
relative to x; the exponent a, which represents the ratio (log y/log x), 
is greater than one. The second is negative allometry. Here y de­
creases relative to the increase in the magnitude of x; the exponent is 
less than one. Finally, when x and y maintain a one-to-one corres­
pondence throughout their increase, growth is said to be isometric; the 
exponent is equal to one. These definitions of positive and negative 
allometry and isometry are valid, however, only when the x and y 
parameters have the same dimensionality. When the dimensions of x and 
y are not equivalent, isometry is indicated by the ratio of the dimen­
sionality of y to the dimensionality of x. For example, when y is an 
area [L 2) and x is a volume [L 3 ), as in the case of the hypothetical 
cubic organism, an exponent of 2/3 is indicative of isometry; a value 
greater than this denotes positive allometry; a lower value denotes 
negative allometry. 

ln the allometric power function it is both the exponent a and the 
intercept b which relate the growth of the system component y to the 
growth of the system, or the component, x. The exponent represents 
the change in the value of log y per unit change in log x, indicating 
the general nature of the co-relationship. The specifie value of y for a 
given value of x, however, is also a function of the value of the inter­
cept. For this reason, the role of a criterion for the "intensity of 
differential increase" is generally ascribed to the intercept [14). 

Three Related 1nterpretations 

The application of the principle of allometry to the social sciences is by 
no means novel. Pareto's [22) law of the distribution of income, the 
articulation of the "rule" of rank-size regularities in the population of 
cities by Auerback [1) and Zipf [39), and Zipf's [38) law of the distri ­

2The power function equation may be derived in this manner; 
F(dy, y, dt) ay 
F(dx, x, dt) ax 

and since the growth functions of y and x can be said to cancel 
algebraically, 

9.L dx 
ydt xdt = a 

9.L dx
f ydt = a f X""dt
 

and eliminating dt from both sides,
 
10geY = a logex + logeb
 

y = bxa . 
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bution of word frequencies in languages, are implicit aspatial formula­
tions of the principle. A number of examples of the application of 
allometry to the spatial characteristics of human and physical phenomena 
may be found in the geographic literature, commencing with the work of 
Stewart and Warntz (26) two decades ago. 3 The vast majority of these 
studies, however, have taken very limited views of allometry, focusing 
on the existence of a constant ratio relating the increase of the x and y 
parameters, as indicated by the exponent. Generally neglected have 
been the change of shape of a system necessitated by increasing magni­
tude, as exemplified by the simple model of the cube-shaped organism, 
and, to an even greater extent, the implicit expression of competition in 
the allometric relationship. 

The Constant Ratio 

The most common use of allometry in the social sciences has involved 
fitting a power function to a set of data describing the growth of a 
system. In cases where the power function represents a good fit to the 
data, the exponent may be interpreted as a descriptive measure of the 
manner in which the relations between system elements change with 
increasing size. This may be illustrated by Bunge's [7; 8) interest in 
the relative proportions of the components of a city system. He has 
suggested that the "sium" is a functional part of a city and that by 
increasing the size of the city, the size of the sium will necessarily 
increase; the specific nature of the increase is indicated by the expon­
ent. A further example involves the relationship between the areal 
extent of a spatial unit and its population size. Stewart and Warntz 
(26) have found that a constant ratio exists between the areas and 
populations of certain city systems. The exponent of the power func­
tion relating these two parameters may reflect an optimal spatial expres­
sion of growth. 

Size-Correlated Shape Change 

Several geographers who have utilized the allometric principle have 
incorrectly applied the term "allometry" to any relationship that may be 
fitted by a power function. Nordbeck [19; 20), for example, equates 
the term "Iaw of allometric growth" to "power function" and then pro­
ceeds to use the power function only for relations exhibiting the special 
case of isometry, where there is no change of shape with size increase. 
Since allometry means size-correlated change of shape (this is implicit in 
its etymology), these types of studies reflect a confusion over the 
proper use of the principle. 

The term "shape change" is a general one that includes alteration 
both of the external form of an object, such as the convolution of the 
surface of the hypotheticaJ cubic organism above, and of the internai 
relations of the components of a system. When growth exhibits either 
positive or negative allometry, the shape of a system cannot remain 
unchanged beyond a certain size. 

Nordbeck (20) discovered that an exponent of 0.66 relates the 
areal extent of built-up areas in Sweden to their population sizes. 
Since population (the x parameter) is regarded as a volume, having the 
dimensions of 3, and since area has the dimensions of 2, isometry is 
indicated by an exponent of 2/3 = 0.66. 4 Therefore, no size-related 

3See , for example, Nordbeck [19; 20), Woldenberg [36; 37), Ray 
(23), Dutton [11; 13), and Strahler [27]. 

4Woldenberg (36) accepts this view but offers the alternative inter­
pretation that population be regarded as an "area-using" variable 
and, therefore, of the same dimensions as area, namely 2. In this 
Interpretation, isometry is indicated by an exponent of 1.0. 
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shape change is exhibited in the Swedish built-up areas. Stewart and 
Warntz (26) found, on the other hand, that for a sample of European 
cities, area and population were related by an exponent of 0.75. Since 
0.66 signifies isometry, 0.75 represents positive allometry and indicates 
that there is a change of shape associated with the variation in t~e size 
of these cities. The area-population relationship will receive further 
consideration below. 

A final point concerning size-correlated shape change involves the 
notion of the limits to growth. Going back to the simple model of the 
cubic organism once again, recall that when the length of the si de of 
the cube attained six units, the volume of the organism equalled its 
surface area. If the organism were to grow any larger, the volume 
would necessarily exceed surface area. Since this would surpass the 
ability of the organism to sustain life through interface with its environ­
ment, growth would have to cease when volume equalled area. As 
Boulding [5, p. 72] notes, growth creates form but form Iimits growth. 
The only manner in which the organism could continue to grow would be 
if the surface area increased disproportionately more than increase in 
volume; that is, if the exponent were lowered. Since 

volume = b area 312 

indicates isometry, an exponent with a value lower than 3/2 would 
enable this disproportionate increase. And, as we have seen, this 
decrease in the exponent results in convolutions and bumps in the basic 
cu bic shape. 

Competition 

The final aspect of allometry is one which, to the best of my know­
ledge, has been articulated only by Bertalanffy (3). Briefly, the 
allometric relationship may be viewed as an expression of competition 
within a given system, with each system component taking its share of 
the available resources of the total system according to its capacity, as 
expressed by the exponent. The exponent may thus be regarded as a 
"growth partition coefficient" [15, p. 49) that expresses the capacity of 
a component to seize its share of the resources. An exponent indicat­
ing positive allometry signifies that the component in question captures 
a proportionately larger share of the resources than either the total 
system or a second component. Conversely, an exponent indicating 
negative allometry signifies that a component captures a share propor­
tionately less than the system or a second component. 

The differential growth of various system components is, then, a 
consequence of the competition among these components for the re­
sources available to the system from its environment. This is a direct 
extension of the theory of open systems, which concerns the continuous 
exchange of matter and energy between a system and its environment. 
1n Biology, the role of competition both among the components of an 
organism and among the species that comprise an ecological system has 
long been recognized. Bertalanffy [3, p. 66) writes that every whole 
is based upon the competition of its elements and presupposes the 
struggle between parts, and Thom [28, p. 323) suggests that ail mor­
phogenesis may be attributed to this type of conflict. One consequence 
of a sustained advantage in favour of one component is that in the long 
run the components with the smaller capacities will be exterminated. In 
the extreme case of growth, carcinogenesis, one component captures so 
much of the avaliable resources that the total system not only grows 
proportionately less than the carcinoma but eventually declines in abso­
lute size. 

ln biological instances of allometry, the resources of the environ­
ment that are the subject of competition generally include food, light, 
air, water and, not least, space. Indeed, Thom [28, p. 222) cites the 
competition for space as one of the most primitive (and therefore basic) 



54 55 

forms of biological interaction, both among the internai components of 
an organism and among the components of an ecological system. In 
social-economic systems, the same basic form of competition may be 
identified. In fact, the arrangement of phenomena on the earth's 
surface may be generally conceptualized as the outcome of the competi­
tion for "equipped" space, space having particular characteristics. 

One example that cornes to mind involves Bunge's statements con­
cerning the relationship of the size of the sium to the size of its "host" 
city. By extension, this also implies a relationship between the sium 
and the other components of the city; the upper class residential dis­
trict, for example. Using several different criteria of size, we might 
expect to find, and to empirically fit the values of the two constants 
of, the following relationships between a city (C), its sium (S), and its 
upper class residential district (R): 

area 5 =b area cP (1) 

population 5 =d population Cq 
(2) 

income 5 =e income Cr (3) 

area 5 = f area R
t (4) 

population 5 =g population RU 0) 

income 5 =h income RV (6) 

These equations not only describe the relationships between the sium, 
the upper class ghetto, and the whole city, but, if the values of the 
exponents are known, also describe the outcome of the competition for 
the resources of the urban environment, space, people, and income. 
Since ail of the equations are dimensionally balanced, an exponent 
greater than one indicates that the sium is capturing a proportionately 
larger amount of the resources; an exponent less than one indicates 
that it is capturing a proportionately smaller amount; an exponent of 
one indicates that it is capturing its "fair share". On the basis of a 
stereotyped image of the urban system, one might expect the exponent 
to exceed one in equations (1) and (2) and to be less than one in 
equations (3) and (6). 

Allometry in Urban and Regional Systems 

The following examples are intended to illustrate both the three facets 
of allometry and the wide range of phenomena to which the principle 
may be applied. .As these examples indicate, there are two distinct 
modes of analysis which may be employed: diachronie analysis, which 
traces the growth of a single system through time; and synchronie 
analysis, which examines a set of systems at a single point in time. 
The implicit assumption of synchronie analysis is that a set of individual 
systems of varying magnitude represents the stages of growth of a 
single system; small cities, for example, are assumed to have the same 
form as large cities and to represent their early stages of growth. 
Biologists conventionally make this assumption in studies of the growth 
of individual members of a particular species. As there may be qualita­
tive as weil as quantitative differences between small and large social­
economic systems, the synchronie approach must be applied with 
caution. 

Urban ization 

The rapid population growth of man y of the world's nations has been 
concentrated in that portion of the population which may be classed as 

urban; the phenomena of metropolitanization and megalopolitanization 
have long been recognized over the globe. While this rapid urbaniza­
tion has been occurring, however, there has been no more that Iimited 
success on the part of any society in either stimulating further urban 
growth or preventing it [13,p. 2]. This suggests that there may exist 
in social-economic systems sorne natural principle of growth that resists 
exogenous control. 

Such a principle may be illustrated by the rate of Canadian urban 
growth, which has maintained a constant ratio to the rate of the 
nation's total population growth from 1901 to 1976 (Figure 1).5 Although 
there i5 sorne difficulty associated with these data because of the chang­
ing definition of "urban", the fit is a good one (r2 = 0.999) and the 
exponent (1.50) indicates that the urban population of Canada is in­
creasing at a rate greater than that of the total population (positive 
allometry). Figure 1 also shows the growth of the urban fraction in 
the Maritime and Prairie regions, both of which exhibit positive allo­
metry. The rate of growth of the urban population in the Maritimes is 
somewhat less than that of the national system, while that of the 
Prairies exceeds the national system. This is likely a reflection of the 
early urbanization of Eastern Canada and the more recent urbanization 
of the Prairies. Ideally, the analysis should commence with an earlier 
time period, but reliable data are not readily available. 

The relationship between the total population and the urban frac­
tion illustrated here may be conceptualized as competition between the 
urban and rural subsystems. The disproportionate increase of the 
urban portion of the population indicates the relative degree of attrac­
tion of urban places, and may be a manifestation of sorne functional 
Imperative or design criteria within the national system. Further, the 
differential increase of the urban fraction has definite implications for 
the shape, the geometry, of the national system. The distribution and 
flow patterns of people, information, goods, and money in a highly 
urbanized system may be expected to be quite distinct from those in a 
rurally oriented society. 

The empirical relationship presented here is consistent with the 
work of Stewart [25], later extended by Dutton [12], in which the 
exponent relating the urban fraction of the U. S. to its total population 
over the years 1790 to 1970 was determined to be 1.73. The allometric 
exponent, one might hazard, may have considerable significance as a 
parameter of growth which characterizes the nature of the urbanization 
process in differing economic, cultural, and technological mediums. 

Land Use 

It has been explicitly recognized by a number of researchers [2; 17] 
that land use proportions within a city change with the size of the city, 
as defined by either area or population. The methods of analysis 
employed by these researchers, however, have been somewhat unsophis­
ticated. For example, size has not been treated as a continuous vari­
able, making comparative studies difficult. 

The allometric principle appears to have considerable utility for 
studies of land use proportions. The areas devoted to specifie land 
uses within a given city might be expected to be functions of its total 
developed area, as opposed to the total area within the political subdivi­
sion. The exponents of the power functions relating land use areas to 
total developed area would then convey considerable information concern­
ing the internai relations of urban land use. 

An allometric analysis of urban land use may be illustrated using a 
data set compiled by the Ontario Department of Municipal Affairs [21]. 

5Data source: Historical Statistics of Canada [32], Series A 15-19. 
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This data set contains estimates for total developed area, population 
density, and acreages in residential, commercial, industrial and open 
space categories for 51 urban areas in Ontario. 6 These urban areas 
range in (1966) population size from Metropolitan Toronto (1,652,300) to 
Tottenham (700). Although obvious problems concerning criteria, 
classificatory procedures, and variability in data exist, the high level 
of aggregation employed· renders the data sufficiently consistent for 
illustrative purposes. 

Figure 2 displays the relationships between total developed area 
and four land use types for the set of cities. 1ndustrial land and open 
space exhibit a slightly positive allometry; as the total developed area 
of a city increases, the area of land devoted to these categories in­
creases by a 9 reater proportion. Commercial and residential land, on 
the other hand, show slightly negative allometry. There is some ques­
tion, however, as to whether these exponents differ significantly from 
1.0. In other words, in ail four cases growth may be isometric; speci­
fic land uses and total area may increase as a one-to-one correspond­
ence. While one should not ascribe any great significance to the partic­
ular exponent values that have been arrived at here because of the 
nature of the data, it is evident that this type of analysis, combined 
with a reliable data set, may prove valuable in understanding the 
structure (shape change) and dynamics (competition) of a particular 
culture's urban system. The allometric principle may thus have strong 
and utilitarian implications for planners. 

These results are consistent with Woldenberg's [36] analysis of 
U. S. data; commercial and residential land were found to exhibit nega­
tive allometry, while open space and industrial land showed positive 
allometry. 1n ail cases, however, the exponents were close to 1.0. 
Woldenberg's investigation also considered the relationship between the 
various land use categories and the total population of cities, instead of 
total developed area. Similar results were obtained when total popu­
lation was employed. 

Population and Buiit-up Area 

The initial, and perhaps most widely utilized, application of the allo­
metric principle in geography concerns the relationship between the 
population and the built-up (total developed) area of settlements. A 
number of studies which have employed highly diverse data have con­
cluded that the built-up area of a settlement may be related to its total 
population by a power function of the form: 

built-up area = b total population
a

. 

ln general, the nature of the relationship is one of positive allometry; 
as a settlement grows, its areal extent increases more rapidly than its 
population. 7 ln other words, population growth is spatially extensive, 
with the increasing numbers tending to become distributed on the 
periphery. Table 2 summarizes the exponents arrived at in several 
studies in the geographic literature. In addition, the exponent relating 
population and total developed area for the set of 51 Ontario settlements 

6ldeally, the analysis of varying proportions of land use would 
involve diachronic data. There are, however, virtually no dia­
chronic data available, and relatively few synchronic data sets. 

7Recall that, due to the dimensions of the variables involved here, 
an exponent of 0.66 is indicative of isometry. 

59 

is shown. Note that Stewart and Warntz have established the value of 
the exponent using both synchronic and diachronic anaylsis. 8 

Table 2 

EXPONENTS RELATING BUILT-UP AREA AND TOTAL POPULATION 

Author Data Set Exponent 

Woldenberg [36] 89 U.S. cities, 1960 0.78 

Nordbeck [19] Swedish clties, 1960 0.66 
U.S. cities, 1950 0.86 
U.S. cities, 1960 0.88 
Densely inhabited districts, 
Japan, 1960 0.91 

Stewart and Warntz [26] U.S. and European cities, 1951 0.75 
U. S. and European cities, 1890­
1951 0.75 

Coffey 51 Ontario urban areas, 1966 0.87 

The power function exponent has received considerable attention in 
these studies as it is quite readily interpretable in terms of the differ­
ential growth of area relative to population. The intercept of the power 
function, however, is quite possibly a more meaningful index of the 
area-population relationship. Where the exponents of two power func­
tions are equivalent, the values of the intercepts indicate differences in 
the amount of area which is required to contain a given level of popula­
tion. This is consistent with Gould's [14] identification of the role of 
the intercept in an allometric equation as a criterion for the intensity of 
differential increase. 

Nordbeck's [20] investigation of the area-population relationship in 
Swedish settlements illustrates this Interpretation of the intercept. 
Using the intercept as a "space standard" or index of compactness, he 
identifies three classes of settlement: those with compact built-up 
areas, having a relatively small area for a given population; those with 
mean built-up areas; and those with spacious built-up areas, having a 
relatively large area for a given population (Figure 3). The compact 
settlements have thier manifestation in railroad centres and older ports, 
whereas the spacious settlements are resorts. 

ln a similar manner, Tobler [31] uses the intercept of an equation 
relating the radii of circ/es proportional to the built-up areas of settle­
ments to population as a measure of settlement packing. Examining the 
intercept value for the urban systems of a number of cultures, he notes 
that it possesses considerable usefulness in distinguishing between the 
various strategies employed by societies for the organization of spatial 
activity. Stewart and Warntz [26, p. 104] have suggested that the 
level of settlement packing, or land use intensity in a settlement, is 
related to the base population potential of the settlement; empirical 

8Vining and Louw [33] have recently introduced into the liter­
ature a cautionary note on the power function relating urban area 
and population. Their results indicate that in some countries the 
function may not be stable over time; diachronic analysis should 
not be expected to replicate synchronic results. 
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INDEX OF COMPACTNESS, SWEDISH URBAN AREAS, 1965
 

A problem common to the preceding illustrations is the definition and 
measurement of the relative magnitude of the variables involved. The 
exponent values may vary considerably depending upon the criteria and 
the consistency with which urban population, total developed area, and 
the areas in specific land uses are defined. The problem is essentially 
one of drawing a boundary arolind a set of homogeneous elements. It 
involves partitioning continuous variables, such as population and area, 
into discrete classes for the purpose of measurement. One method of 
partially avoiding problems related to definition and measurement is to 
employ continuously distributed variables in the analysis. 

Income potential is a continuous field quantity which is an aggre­
gate index of accessibility to the income in a spatial system. Income 
density, although conventionally measured for discrete units, is a 
continuous quantity everywhere differentiable and generally exhibiting 
no discontinuity across a spatial system. These two parameters have 
been shown to be of considerable utility in describing the spatial struc­
ture and the spatial dynamics of a social economic system [34; 35] . 

Rosen [24] and Brody [6] have suggested that the allometric 
exponent behaves as a design criterion; the system changes geometric­
ally in order to remain the same functionally. This notion is relevant 
within the present context. Since income potential generally declines in 
a symmetrical manner from the centre of a city, and since the relation­
ship between income potential and income density is positive, locations 
toward the city centre will have densities higher than those locations 
toward the periphery. The specific income densities over a given 
potential distribution are a function of both the exponent and the 
intercept of the D = bU a power function. The level of density in a 
peripheral location relative to a central location, or, more precisely, at 
low potential relative to high potential, may be expressed solely on the 
basis of the value of the exponent, however, assuming that the inter­
cept is constant. 

Since income density has the dimensions of dollars per square mile, 
_2 

($L ), and income potential has the dimensions of dollars per mile, 
_1 

($L ), an exponent value greater th an 2 indicates positive allometry. 
That is, an exponent greater than 2 signifies that any increase in 
income potential will be accompanied by an increase in income density 
such that the "shape" of the social-economic terrain changes in terms of 
its income density-income potential relations. Again, there is sub­
stantial theoretical basis for interpreting this change in geometry as 
permitting the system to maintain its functional integrity throughout. A 
higher level of income density is required in the centre of the city in 
order to maintain functional relationships commensurate with those 
achieved at lower densities on the periphery. One readily identified 
manifestation of this functional relationship involves the concept of 
returns to investment. Given the higher costs of developing and main­
taining commercial and residential facilities in the central city, and 
given the low degree of physical mobility of inner city residents relative 
to suburban consumers, a higher density of income is necessary to 
guarantee returns on central city investments comparable to those that 
may be acquired at lower densities in the suburbs. At the scale of the 
U. S. national system, Warntz [34] has shown that the exponent has 
deviated little from a value of 3.0 from 1880 to 1959. Subsequent work 
by Warntz and this author has shown that the exponent maintains its 
value through 1970. Both Warntz and Tideman [30] provide theoretical 
justification for regarding this value as an optimal one which enables 
the system to maximize profit over space. This reinforces the notion of 
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the exponent's role as a design criterion which indicates the requisite 
shape of the system. 

Investigations at both metropolitan and national levels strongly 
suggest that the D - U. exponent further represents a generalized 
measure of intensity of land use. Within a metropolis there appears to 
be a direct relationship between the exponent and level of internai land 
utilization, manifest in high land rents and high densities. Further, 
evidence indicates that the exponent also reflects homogeneity of income 
distribution, the exponent being inversely related to degree of homo­
geneity. Theoretical support for this relationship is independently 
provided by Bunge's (7) adaptation of the von Thunen rent model, 
which demonstrates the association between high density of population 
and income and disparities in social well-being. At the national scale 
the exponent has similar significance, indicating level of urbanization or 
agglomeration and degree of homogeneity of income distribution. Thus, 
there is evidence that at either scale the exponent may be viewed as a 
relative measure of social-economic homogeneity or its converse, stratifi ­
cation. 

If we compare two hypothetical cities with simiJar income potential 
profiles, it is evident that the larger the difference between the expon­
ents of each, the greater the variation in the ranges of income density 
that each experiences. A wide range of income density values is gen­
erally indicative of stratification. It has been demonstrated elsewhere by 
the author that high income density i s characterized by the crowding of 
large numbers of lower income persons onto a given tract of land [la). 
It is precisely this condition that makes a "sium" one of the most prof­
itable uses to which a parcel of central city land can be put. 

1 ncome density-income potential relationships in the Boston and 
Toronto metropolitan systems and the U. S. and Canadian national sys­
tems are summarized in Table 3. At both metropolitan and national 
scales the U. S. systems exhibit higher exponents than their Canadian 
counterparts. Note that both Canadian systems have intercepts higher 
than their American counterparts, indicating higher income densities at 
very low levels of potential. As potential values never decline to such 
levels within the boundaries of any of the systems, however, it is pos­
sible to say that the U.S. systems have higher densities at ail levels of 
observed potential. The indication is that the U. S. systems possess a 
geometry (broadly defined in terms of both social and physical dimen­
sions) that is more efficient in terms of Tideman's notion of the maximi­
zation of profit. Yet, as noted above, the cost of this efficiency is 
perhaps high in terms of equality of well-being. 

Table 3 

METROPOLITAN AND NATIONAL POWER FUNCTIONS: INCOME 
DENSITY (D) AND INCOME POTENTIAL (U) 

Coeffi- Number 
cient of of ob-

Expo­ correla­ serva-
Equation nent tion tions 

-- ­
Canada (1971) 

Toronto (1971) 

Boston (1970) 

U.S. (1970) 

_4 
D=7.48xl0 

_14 
D = 3.61 x la 

_17 
D = 1.49 x la 

_8 
D = 2.90 x la 

u2 '14 

U2'26 

U2'6S 

U3'03 

2.14 

2.26 

2.65 

3.03 

0.813 

0.757 

0.826 

0.735 

238 

447 

536 

3068 

Conclusion 

The preceding illustrations demonstrate that an allometric perspective 
may be of sorne utility in the analysis of regional and urban social-eco­
nomic systems. The potential for the application of allometry lies both 
in the description of various aspects of growth and in attempts to 
achieve an understanding of the processes which are involved in region­
al development. In this latter regard, the role of the allometric expo­
nent as a design criterion which places certain constraints upon system 
geometry, broadly defined in terms of physical space and N dimensional 
social space, may be of particular relevance. Strong evidence suggests 
that ail systems, economic as weil as biological, change geometrically in 
order to maintain their functional relations. 

Three implications of the allometric principle have been explored. 
Whereas the constant ratio and the size-correlated shape change aspects 
are quite evident in the illustrations employed, the concept of competi ­
tion is somewhat less readily interpretable. The growth of the urban 
fraction and differences in the proportions of land use types involve 
competition explicitly. The relationships between the population and 
area of settlements and between income potential and income density 
are, however, similar manifestations of competition. As in the former 
examples, the distribution of people and income over space is implied in 
these relationships, and competition may be conceptualized in terms of 
alternative strategies for the intensive or extensive utilization of avail ­
able space. 

Allometry involves a simple functional relationship between the sets 
of values assumed by the two system components under consideration. 
This simple functional relationship which describes the nature of growth 
in a system represents the optimal alternative under a given set of 
conditions. This has been demonstrated mathematically by Rosen [24, 
pp. 80-83). Further, optimal forms are inextricably knit with conser­
vation principles. Most systems that are in, or are approaching, an 
optimal state behave in a manner that conserves space, time and ener­
gy; in a social-economic system income is probably conserved also. 
This is not to suggest that ail systems which are characterized by 
allometric growth are in an optimal state, but rather that there is a 
tendency for them to approach that state. The allometric relationship is 
also characteristic of open systems that are in dynamic equilibrium or a 
steady state. The steady state of an open system takes the place of 
and is equivalent to the equilibrium state of a closed system. There­
fore, there is a direct connection between allometry and probability 
since, in a closed system, equilibrium, the state of maximum entropy, is 
the most probable state [35). Allometry may thus be regarded as 
representative of a condition of maximum probability within the flow 
constraints of a given system. 
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