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The housing sector in Canada is an important and significant component of the

economy. Investment in new housing construction in Canada totaled C$79.8

billion in 2006, representing almost 6.8% of Canadian GDP. In 2006, construction

began on 227,395 new housing units in Canada. With 1.6 million new dwellings

built each year, the impact of new housing construction is even more pronounced

in the United States. W hereas billions of dollars are invested in new housing

construction every year, it is rather surprising that the development behaviour of

homebuilders has not been subjected to the same level of empirical scrutiny that

has been given to housing demand.

We argue that in addition to the role of highway construction and

improvement projects, urban form, to a large extent, is determined by explicit

choices made by homebuilders. The intensity of development, measured as

housing units per acre, and type of new housing to be developed, such as single-



226 M OHAM M ADIAN, HAIDER AND KANAROGLOU

family detached or apartments, are the choices made by homebuilders, which end

up defining the urban landscape. Moreover, homebuilders also determine when to

build and how much of new housing to build. While the abovementioned decisions

made by homebuilders are in response to certain market signals they receive from

the homebuyers’ consumption behaviour, the homebuilders, however, operate with

a certain degree of freedom about the choices they make. Whereas households

decide where to live and what type of housing to occupy, homebuilders define the

choice set that is made available to households. Thus, to a certain extent, the

household’s housing choices are conditional upon the choices already made by

homebuilders. It is therefore very surprising that the type, location, and timing of

new housing construction, which are decisions made by homebuilders, have been

the focus of only a handful of studies.

  The heterogeneity in the size and type of homebuilding firms suggest that

there is no one standard type of homebuilder. In the Greater Toronto Area, the

large homebuilding firms build in excess of 7,000 units per year, whereas the small

homebuilders may build fewer than 10 units per year. Despite the variance in type

and size of homebuilding firms, the homebuilders represent certain common traits.

For instance, the greenfield low-density housing developments on the urban fringe,

which resulted in suburbia, suggest some behavioural conformity among

homebuilders. Rows of cookie-cutter housing built by different homebuilders

suggest that the type of new housing development is influenced by other

residential development projects that have been built in the recent past. Again,

these spatial dependencies impacting homebuilders’ choices have not been

accounted for in the empirical studies.

Land-use and housing choice models rely on behaviours that vary over space

and time resulting in spatial and temporal dependencies across decision-makers

and alternatives. While researchers often account for temporal autocorrelation, the

spatial dimension is frequently ignored in discrete choice models, leading to

inconsistent estimates (McMillen 1995). One possible explanation might be that

space is in general more complex to deal with than time. While time can be

considered as one-dimensional, even in its basic form, space is two-dimensional.

If spatial dependencies exist, it can be argued that decision-makers may influence

each other, resulting in correlated choice behaviour over space. We specifically

argue that proximity to other decision-makers (homebuilders in this application)

in space influences the decision process and that this influence increases with

proximity.

Earlier attempts to account for spatial dependence focused largely on

continuous dependant variables, in the context of regression analysis (Anselin

1988; Case 1992; Dubin 1992, 1998). There has been relatively little work in the

literature on incorporating spatial dependencies into discrete choice models. Boots

and Kanaroglou (1988) incorporated the effect of spatial structure in discrete

choice models of migration. Few other studies investigated spatial effects in

conventional binary probit models where spatial dependencies were present

(McMillen 1995; Berton and Vijverberg 1999). Dubin (1995) developed a spatial

binary logit model to predict the diffusion of a technological innovation. In her

model, the probability of adoption of a new technology varies with the firm’s own
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characteristics and its interactions with previous adopters. Paez and Suzuki (2001)

tested the application of this spatial binary logit model to a land use problem,

considering the effects of transportation on land use changes. Mohammadian and

Kanaroglou (2003) expanded the binary choice model into a more general form,

deriving a spatial multinomial logit model (SMNL) and tested it on a housing type

choice problem. Bhat and Guo (2003) developed a mixed spatially correlated logit

model for residential location choices. Their model combines the generalized

extreme value (GEV) model and a mixed multinomial logit model to allow spatial

correlation across alternatives. 

In this paper, spatial dependency terms are implemented in a mixed (random

parameter) logit framework to form a spatial mixed logit model (SML), allowing

utility coefficients and spatial dependency term parameters to differ across

decision makers (homebuilders). The model is applied to a housing type choice

problem for new housing projects. The results of the model present a substantial

improvement, in terms of model fit, over spatial logit and standard multinomial

logit models.

This paper is structured in six sections. The second section briefly explains the

model specification. The third section describes the data set. The fourth section

presents the process of model development and estimation results. The fifth

section describes the analysis of the results and, the sixth and final section presents

the conclusion and discussion.

Model Specification

Random utility based discrete choice models have made their way into many

disciplines including transportation, marketing, and other fields. Multinomial logit

model (MNL), the most popular form of discrete choice models in practical

applications, is based on several simplifying assumptions. These include the

independent and identical Gumbel distribution (IID) of random components of the

utilities and the absence of heteroscedasticity and autocorrelation in the model. It

has been shown that these simplifying assumptions limit the ability of the model

to represent the true structure of the choice process. Recent papers have

contributed to the development of closed form models that relax some of these

assumptions and provide a more realistic representation of choice probabilities.

Mixed logit (ML) and Generalized Extreme Value (GEV) models are examples of

these alternative structures (see Bhat (2002) for a detailed discussion).

Discrete choice models assume that decision-maker’s preference for an

alternative is captured by the value of an index, called utility and a decision-maker

selects the alternative from the choice set that has the highest utility value (Ben-

Akiva and Bierlaire 1999). Equation 1 represents the utility of alternative i in the

n inchoice set C  for decision-maker n (U ), which is considered to be a random

variable (Ben-Akiva and Lerman 1985).
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The utility function consists of an observed deterministic (or systematic)

in incomponent of utility (V ) and a randomly distributed unobserved component (g )

that captures the uncertainty. It is assumed that the alternative with the highest

utility is chosen. 

In some applications of discrete choice models, such as housing choice, it is

quite likely that choices are correlated in space. Spatial correlation is defined as

the dependency found in a set of observations over space (Anselin 1988). In the

context of spatial choice, it occurs when individual decision-makers are related

through their spatial proximity. It may also occur when the choice set consists of

spatial entities in varying levels of proximity with each other. A common approach

in the spatial analysis literature for capturing the correlations across alternatives

is to allow alternatives that are contiguous to be correlated. The unobserved spatial

correlation across alternatives can be accounted for by utilizing a mixed GEV

model as shown by Bhat and Guo (2003). On the other hand, to account for spatial

dependency across decision makers, the utility function defined in Equation 1 can

be modified to consider spatial interactions and dependencies.

inIt can be assumed that the systematic component of utility function (V )

consists of two parts; the first part is a linear-in-parameters function that captures

the observed attributes of decision-maker n and alternative i, while the second term

captures spatial dependencies across decision-makers. Utility of alternative i for

decision-maker n is given as:

iwhere parameters â  make up a vector of parameters (to be estimated)

incorresponding to X , the vector of the observed characteristics of alternative i and

decision-maker n. Parameter ñ makes up a matrix of coefficients representing the

influence that the choice of decision-maker s has on decision-maker n while

choosing alternative i. S is the number of decision-makers who have some

siinfluence on n. y  will be set to unity if the decision-maker s has chosen alternative

i, and zero otherwise. ñ can be modeled similar to an impedance function. In

spatial statistics, it usually takes the form of a negative exponential function of the

nsdistance separating the two decision-makers (D ).

where ë and ä are parameters to be estimated. The total influence that the choices

of all other decision-makers have on decision-maker n can be modeled as:

(1)

(2)

(3)
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Derivation of choice model proceeds in a fashion similar to that of the multinomial

logit model. 

Mohammadian and Kanaroglou (2003) provide the process of derivation of the

spatial multinomial logit (SMNL) model in detail. A summary of the approach is

presented here. The systematic utility function of alternative i for decision-maker

n is given as:

To estimate the spatial dependency term ñ in Equation 3, one needs to estimate the

,parameters ë and ã. These parameters, along with the vector of parameters â  can

be estimated directly through maximum likelihood estimation. 

This simple spatial multinomial logit model can be expanded into a mixed

logit (ML) framework to form a spatial mixed logit model (SML) that accounts for

heterogeneity across decision-makers while allowing spatial correlations across

contiguous decision makers. The Mixed Logit model has been introduced by Ben-

Akiva and Bolduc (1996) to bridge the gap between logit and probit models by

combining the advantages of both techniques. A small yet growing number of

empirical studies make use of the ML model. The earlier studies include Revelt

and Train (1998), Bhat (1997 and 2000), and Brownstone et al (2000). In order to

illustrate this type of model and to derive a SML, we need to modify equation 2:

inwhere á  is a constant term and captures an intrinsic preference of decision-maker

i nn for alternative i, ã , W  captures systematic preference heterogeneity as a function

in tof socio-demographic characteristics, and X  is the vector of attributes describing

alternative i for decision-maker n, in the choice situation t. The vector of

incoefficients â  is assumed to vary in the population, with probability density given

by f (â * è), where è is a vector of the true parameters of the taste distribution. A

spatial dependency term is also introduced to the equation. If the g’s are IID type

I extreme value, the probability that decision-maker n chooses alternative i in a

(4)

(5)

(6)

(7)
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choice situation t is given by:

Note that the probability in the above equation is conditional on the distribution

in inof â . As mentioned earlier, a subset of all of á  alternative-specific constants and

inthe vector of parameters â  can be randomly distributed across decision-makers.

An important element of these random parameter models is the assumption

regarding the distribution of each of the random coefficients. It may seem natural

to assume a normal distribution. However, one coefficient might then be negative

for some individuals and positive for others. For most of the variables, it is

reasonable to expect that all respondents have the same sign for their coefficients,

for example the coefficient for the cost variable should always be non-positive. For

this type of coefficient, a more reasonable assumption would be to assume a log-

normal distribution. For a more detailed treatment of preference heterogeneity, see

Bhat (2000). 

Since actual tastes are not observed, the probability of observing a certain

choice is determined as an integral of the appropriate probability formula over all

npossible values of â  weighted by its density. Therefore, the unconditional

probability of choosing alternative i for a randomly selected decision-maker n is

then the integral of the conditional multinomial choice probability over all possible

nvalues of â ,

In this simple form, the utility coefficients vary over decision-makers,

but are constant over the choice situations for each decision-maker. In general, the

integral cannot be analytically calculated and must be simulated for estimation

purposes. In order to develop the likelihood function for parameter estimation, we

need the probability of each sample individual’s sequence of observed choices. If

nT  denotes the number of choice occasions observed for decision-maker n, the

likelihood function for decision-maker n’s observed sequence of choices,

conditional on â, is:

 

nitwhere y  will take the value of 1 if the n  decision-maker chooses alternative i onth

choice occasion t and zero otherwise. The unconditional likelihood function of the

(8)

(9)

(10)
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choice sequence is:

The goal of the maximum likelihood procedure is to estimate è. The log-likelihood

function is:

 

Exact maximum likelihood estimation is not available and simulated maximum

likelihood is to be used instead. In this method, all parameters are estimated by

drawing pseudo-random realizations from the underlying error process. The

individual likelihood function is then approximated by averaging over the different

n  L (â) values to estimate a simulated likelihood function. The parameter vector è

is estimated as the vector value that maximizes the simulated function. For detailed

discussion of this method see Louviere et al (2000) and Bhat (2000).

The unknown parameters in this study were obtained directly by maximizing

the simulated likelihood function of the SML model.

Data

The data on the type of new housing construction and its determinants were

compiled from numerous sources. Haider (2003, 2004) presents a detailed

descriptive analysis of the data set used for this study. The housing construction

dataset consists of records of new housing developments including information on

the type, location, size, and price of new housing constructed during January 1997

and April 2001 in the Greater Toronto Area (GTA). The database included all new

housing developments that included a minimum of ten new housing units.

Zonal level socio-economic characteristics were obtained from the 1996

Transportation Tomorrow Survey (TTS) database. TTS 1996 is a telephone-based,

travel survey of 5% of households within the GTA that was undertaken in the

autumn of 1996 (Data Management Group 1997). The survey covers household

socio-economic information along with all one-day trips made by household

members 11 years of age or older for a randomly selected weekday. 

Accessibility indices for various types of activities were later developed for

each TTS zone. Instead of using straight-line or network distances as impedance

factors, average estimated travel times from the GTA traffic assignment model

were used for each zone. It is assumed that the accessibility indices capture the

relative accessibility advantage of one TTS zone over the other for various types

of activities (e.g. work and shopping).

Contiguity matrix and distances between centroids of traffic zones were

calculated from the GTA 1996 traffic zone map obtained from the Joint Program

in Transportation, University of Toronto. Numerous other measures of spatial

attractiveness of zones were developed using GIS data from Statistics Canada.

(11)

(12)
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TABLE 1 Variables Used in the M odel

Variable M ean Std. Dev.

Price: price of the housing unit (×10  Canadian Dollar) 2.158 0.5185

Development Charge: municipal charge for the unit (×10  CAD) 10.161 5.0093

Intersection Density: (street intersections/100) ÷ zonal area  1.848  2.691

School Accessibility: mean weighted school accessibility index 60.449 23.182

Em ployment Accessibility: mean weighted emp. accessibility index 77.773 34.889

Inventory: inventory of residential units 243.517 459.055

ijD : distance between centroids of zone i and adjacent zone j (km) 1.698 0.824

It is worth noting that, for simplicity, it has been assumed that the accessibility

measures and other parameters of the estimation data will not change over the

study period (1997 to 2001). While this assumption might be a point of concern,

it is necessary due to the limitations of available data. 

The final sample used in this study comprised 1384 new housing projects for

which all required explanatory variables were available. Each project represented

the homebuilders’ decision to build a particular type of housing units. The

explanatory variables used in this study as well as their sample means and standard

deviations are presented in Table 1. A total of 546 housing projects or 39.5 % of

the sample are single-family detached (SFD) houses. Semi-detached (SD) houses

account for 241 or 17.4 % of developments. Apartment projects are 237 or 17.1

%, and the remaining 360 projects (about 26 %) are other low-rise developments

(e.g. townhouses and row houses). The 1384 housing projects account for the

construction of 113,000 new housing units.

Model Development

Homebuilders are faced with the decision of what type of residential units to build

(i.e., SFD, SD, condominium, or townhouse). It can be postulated that this decision

is influenced, to some extend at least, by nearby housing development projects. In

other words, the existing housing stock, as well as the location factors will affect

the future housing developments in the same neighbourhood. This implies that the

unobserved attributes may be correlated.

The homebuilders’ choice set is defined by the available alternatives in the

dataset. Initially, there were seven distinct housing types in the database. These

were: single-family SFD, SD, townhouse, row house, apartment, condo in high-

rise, and other types of housing units. Descriptive analysis revealed that some of

these housing types are very uncommon. Therefore, seven housing types of the

dataset were aggregated into four groups of SFD, SD, apartments, and other low-

rise housing. The dataset extracted to develop this model contains 1384

unweighted observations of new housing projects. Developers face the decision

to select housing type from four alternatives available in the choice set, which are
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SFD, SD, apartments, and other low-rise housing. It is assumed that all alternatives

are available to all decision-makers, i.e., each developer is free to develop any type

of housing.

The unknown parameters of the SMNL model were obtained directly by a

maximum likelihood estimation of the log-likelihood function. Variables

representing choice attributes and socioeconomic characteristics entered utility

functions in generic or alternative-specific form. Intersection density, school and

job accessibility indices, land-use related variables, and inventory of residential

units in the zone are used as alternative-specific variables. These variables are used

as proxies to present current housing stock and other location factors that affect the

future housing developments in the same neighbourhood. Alternative specific

constants, which capture the systematic impact of omitted variables in the utility

function, were also included in the utility functions of the model. Price of the

housing unit and development charge were two variables representing attributes

of alternatives. The variable “development charge” is the municipal tax for

different types of housing projects. 

inAdditionally, the spatial dependence term, Z , as shown in Equation 6 is

ijintroduced to the utility function. This term is a function of distances (D )

separating one housing project from adjacent projects of similar housing type (see

Equation 4).

The model has been estimated with and without the spatial dependency term

(SMNL/MNL models) using the same set of explanatory variables as defined in

Table 1. The results of maximum likelihood estimation of both models are

summarized in Table 2. 

As discussed earlier, in order to account for heterogeneity, a spatial mixed

logit model (SML) is developed (see Equation 8). In random utility models,

heterogeneity can be accounted for by allowing certain parameters of the utility

function to differ across decision-makers. It has been shown that random

parameter formulation can significantly improve both the explanatory power of

models and the precision of parameter estimates.

SML model specification is similar to that of MNL and SMNL models, except

that the parameters can vary in population rather than be the same for each

decision-maker. As mentioned earlier, these parameters cannot be estimated

analytically and must therefore be simulated for estimation purposes. In this study

1000 repetitions are used to estimate the unconditional probability by simulation.

This will improve the accuracy of the simulation of individual log-likelihood

functions and will reduce simulation variance of the maximum simulated log-

likelihood estimator. 

Two important aspects of modeling strategy that need to be considered before

estimating a SML model are identifying parameters with and without

heterogeneity as well as the assumption regarding the distribution of each of the

random coefficients. These two must be selected based on prior information,

theoretical considerations, or some other criteria. Random parameters in this study

are estimated as normally distributed parameters in order to allow them to assume

either negative or positive values. The observed attributes of the choices

(explanatory variables) and their unobserved attributes (alternative specific con-
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TABLE 2 Estimation Results and Comparison of Standard M ultinomial logit (M NL) Spatial

M ultinomial Logit (SM NL) and Spatial M ixed Logit (SM L) M odels

Variable Alt.1

M NL SM NL SM L

Parameter t-stat Parameter t-stat Parameter t-stat

Price All 0.148 1.615 0.132 1.678 1.417 2.211

     Std. Dev. of Price -- -- -- -- 1.664 4.906

Development Charge D -0.140 -2.715 -0.175 -2.725 -- --

S -0.167 -2.897 -0.173 -2.981 -- --

O -0.204 -3.257 -0.219 -3.480 -- --

A -0.288 -3.231 -0.301 -3.381 -- --

Intersection Density D, S -0.341 -5.359 -0.324 -5.947 -1.204 -6.849

School Accessibility D 0.106 4.362 0.088 3.182 0.118 5.424

S 0.106 4.362 0.091 3.239 0.169 2.691

Employment Accessibility D -0.084 -4.418 -0.075 -3.447 -- --

S -0.074 -3.858 -0.064 -2.900 -0.083 -1.610

A 0.049 8.195 0.040 6.711 0.087 8.350

Inventory A -0.005 -3.296 -0.005 -3.614 -0.010 -3.994

Alternative Specific Constant D 4.572 5.821 4.352 5.802 6.347 4.124

     Std. Dev. of Detached Con. -- -- -- -- 2.986 1.848

Alternative Specific Constant S 4.001 4.503 3.081 3.683 4.909 4.788

     Std. Dev. of Semi-Det. Con. -- -- -- -- 1.773 1.540

Alternative Specific Constant O 4.731 6.216 3.937 5.448 4.683 6.656

     Std. Dev. of Others Con. -- -- -- -- 2.793 3.037

ë D, S O, A -- -- 0.467 4.412 2.455 5.455

     Std. Dev. of param eter ë  --  --  --  -- 2.135 2.316

g
D, S, O ,

A
-- -- 2.663 2.922 2.663 fixed

Number of observations 1384.00 1384.00 1384.00

Log-likelihood at zero -1918.63 -1918.63 -1918.63

Log-likeli. const.ant-only model -1832.11 -1832.11 -1832.11

Log-likelihood at convergence -1478.77 -1453.48 -1291.44

Log-likelihood ratio 0.226 0.242 0.324

Note: 1. Alternatives: Detached (D), Semi-Detached(S), Apartment (A), and Others (O)

stants) were introduced as random parameters. Furthermore, the parameter of the

spatial dependence term, ë, is assumed to be random, allowing heterogeneity

across homebuilders with respect to the neighbourhood influence. Table 2 reports

the results of SML model and its comparison with MNL and SMNL models to

assess the importance of the parameter heterogeneity in these models.
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Analysis of the Results

All parameters of the MNL model are statistically significant at the 95 % degree

of confidence or better. Adding the spatial dependence term improves the overall

goodness of fit of the model. The standard MNL model has an adjusted log-

likelihood ratio of 0.226 when comparing the log-likelihood at zero and the log-

likelihood at convergence. The constants alone contribute 0.045 of the 0.226,

suggesting that the attributes in the utility expressions play an important role in

explaining the housing type choice of new homebuilders.

The SMNL model with the spatial dependency term provides a better model

fit over MNL model. The log-likelihood function value increased to –1453.48 and

the log-likelihood ratio for the spatial logit model improved to 0.242. This

confirms the robustness of the spatial logit model formulation and verifies the

importance of the spatial dependency factors in explaining homebuilders’ housing

type choices. 

The adjusted log-likelihood ratio of the SML model increased by 34 % to

0.324 in relation to the value for the SMNL model. This presents a significant

improvement in the model fit confirming the improvement of the explanatory

power of the model as a result of incorporating unobserved preference

heterogeneity. The estimated standard deviations of the random parameters of

price, ë, and alternative specific constants returned significant t-statistics, which

indicated that they were statistically different from zero, and confirmed that

parameters indeed were not consistent across the entire population. Results of the

model strongly imply that heterogeneity is a significant factor in the model. 

The signs of all utility parameters seem to be correct and unambiguous. The

positive sign for the parameter on housing price provides evidence in favour of the

hypothesis that homebuilders tend to be interested in building housing units that

are likely to be sold for a higher price, which would increase their profit margins.

Additionally, it can be hypothesized that the higher development taxes for a

particular housing type will result in a lower choice probability of that particular

housing type. As expected, the municipal development charge variable generated

parameters with negative signs. This indicates that the development charge is

negatively associated with the choice since it enters the model as a ‘cost’ variable.

The development charge variable was not found to be a significant variable in

SML model.

The model indicates that within the developed parts of the urban area, where

street networks are highly developed and the intersection density is higher,

homebuilders are likely to opt for building apartments, while the chance of

building SFD and SD houses is lower. The parameters for SFD and SD houses for

the intersection density variable were almost identical, suggesting that we could

save one degree of freedom by imposing an equality restriction on these two utility

parameters, treating them as generic to these two alternatives.

Homebuilders respond to taste preferences and other needs of households by

supplying types of housing that best meet the needs of households who are most

likely to occupy those dwellings. For instance, households with children would

prefer to locate in neighbourhoods with higher school accessibility. In addition,
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households with children, because of their large size often occupy larger housing

units. The statistically significant positive coefficients for the variable school

accessibility in the utility functions of SFD and SD units capture the afore-

mentioned dynamics. 

The employment accessibility index has been used as a predictor in the model.

The Central Business Direct (CBD) in Toronto has the single highest concentration

of jobs in Toronto and is also very well-served by public transit. The employment

accessibility index uses a gravity-type specification and therefore it assumes a

higher accessibility values for areas in proximity of the CBD. The combination of

high employment concentration and accessibility by rapid transit results in very

high land values in and around the CBD. Therefore, the employment accessibility

index also serves as a proxy for higher land values. The positive coefficient for

employment accessibility in the utility function of apartments offers empirical

evidence for the fact that in the areas with high land value, developers are more

likely to develop apartments (condominiums), which use the minimum amount of

land per housing unit. Similarly, the negative coefficients for the employment

accessibility in the utility functions for SFD and SD housing suggests that

homebuilders are less likely to develop housing developments that are land

intensive.

The parameter of the inventory of residential units in the utility function for

apartments is negative in the model. The large number of housing units undergoing

the approval process in a zone suggest that there are large tracts of developable

land in that zone, making it more attractive to develop SFD or SD housing and less

attractive for apartment type developments. 

The spatial dependency factor (ë) is introduced as a generic variable in the

model. The positive sign of ë indicates that the existence of similar housing type

in adjacent neighbourhoods increases the likelihood of the construction of the

same housing type. This implies that homebuilders are influenced in their decision

to build a particular type of housing by the decisions of other homebuilders in the

vicinity.

Figure 1 presents the magnitude of spatial correlation approximated as a

distance-decay curve, which has been specified as a function of the spatial

 parameters ë and ã. The curve indicates that development projects within a 4-km

(2.5 miles) buffer will have a direct impact on the choice of the project type of

homebuilders. Highly significant t-statistics for the parameter and its standard

deviation suggest that neighbourhood effects are instrumental in determining

housing type choices of homebuilders.

Conclusions

This paper presents the housing type choices of homebuilders while accounting for

spatial dependencies and heterogeneity in taste parameters. The paper also presents

derivation and development of a random parameter discrete choice model. Over

the past few years, a relatively small body of research has attempted to capture the

spatial and temporal dependencies across decision-makers and alternatives. While
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temporal dependencies are often considered in dynamic models, there has been

relatively little work in the literature on incorporating spatial dependencies into

qualitative dependent variables and discrete choice models. 

The basic idea presented in this paper is that homebuilders influence the

housing-type choices of other builders who may choose to build new homes in

close spatial proximity, resulting in a correlated choice behaviour over space. In

this paper, spatial dependency terms are implemented in both standard and mixed

multinomial logit frameworks. The results show that the spatial terms are

statistically significant in the model and improve the model fit. Additionally, the

model captures interactions between housing type, choice behaviour, and the

existing land-use and accessibility. Further improvement to the model presented

here can be offered by integrating the current SML model with a mixed GEV

model. This will provide the opportunity to simultaneously account for spatial

dependencies across decision-makers as well as unobserved spatial correlation

across alternatives. Other improvement includes accounting for the effects of

endogeneity in the spatial discrete choice model.

FIGURE 1 Distance-Decay Curve
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