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In contrast to traditional specifications of hedonic price models, which inherently fail to
adequately capture the influence of location, the abilities of spatial model specifications
to explicitly incorporate the impact of location should improve the accuracy and fair-
ness of urban land value estimates. The objective of this research is to compare the rel-
ative performance of ordinary least squares regression with both spatial autoregressive
and ordinary Kriging models. The purpose of this comparison is twofold: investigate (i)
the relative out-of-sample predictive accuracy; and (i) each model’s respective ability to
produce fair land value estimates. Using vacant land sales from Hamilton, Ontario, re-
sults indicate that the hedonic price models may provide more accurate estimates of

residential urban land values, but spatial interpolation may help promote fairness.

Land values represent the economic
health of urban areas and statistical
analysis of land values supports re-
search on a variety of social, econom-
ic, and land-use planning policies. The
importance and merits of land values
have been around for centuries, and
documented almost two centuries ago
“how difficult it is to work out the land
rent of any given farm; ...[and] it
should not surprise us to find that
nearly every such attempt has misera-
bly failed in practice” (von Thiinen,
1966, p. 212). These difficulties become
more complex when attempting to
work out the land rent of any given
urban lot considering the special char-
acteristics of land, public policy con-
trols, the many different and compet-
ing land uses, and the wide variety of
market participants and financing
methods. Moreover, the price people
pay for property is occasionally ill ad-
vised (Skaburskis, 2002). These diffi-
culties contribute to making the valua-

tion of vacant land one of the most
difficult aspects of property assess-
ment (Gloudemans, Handel, & Warwa,
2002).

Location is clearly an important
factor to consider in real estate re-
search, and “land of different situation
will command very different rents”
(Douglas, 1936, p. 17). The impact of
location still manifests itself in the ex-
plicit influence of land’s location in
space on its value. This inherent geog-
raphy of urban land values affords
them unique characteristics, such as
spatial autocorrelation and spatial
heterogeneity, which have received
considerable attention in real estate
research (for a recent review see Os-
land, 2010) and are expected to con-
tribute to “the increased use of ad-
vanced spatial methods” in the future
(Krause & Bitter, 2012: S19). The prob-
lem with failing to sufficiently capture
the impact of location is that many

the urban land value estimates. Since
the assessed value of real estate is the
basis for, among other things, calculat-
ing property tax burdens, failing to
sufficiently capture the impact of loca-
tion contributes to social and geo-
graphic inequities of the property tax
(Harris & Lehman, 2001; Spinney & Ka-
naroglou, 2012). Consequently, and in
addition to the various public and pri-
vate applications of land price data, it
is important to consider the choice of
modelling technique used to assess
urban land values, because it has eco-
nomic, planning, and social welfare
implications.

The purpose of this research is to
explore the inherent geography of ur-
ban land values by comparing the tra-
ditional ordinary least squares (OLS)
regression model with two spatial
modeling techniques: (1) spatial auto-
regressive models, and (2) Kriging. The
objective of this comparison primarily
concerns each model’s relative per-
formance with respect to their (a)
predictive accuracy and (b) ability to
mitigate geographic inequities (i.e. ex-
amining fairness) in the appraisal of
residential urban land values within
the City of Hamilton, Ontario, Canada.
Unlike predictive accuracy, fairness is
determined by analysis of sales ratios,
which are simply quotients from mar-
ket value divided by market price. A
number of fairness (uniformity)
measures including the coefficient of
dispersion (COD), and price-related
differential (PRD) values will be used
in this study (IAAO, 2007). The spatial
autoregressive techniques employed
here include spatial lag (SPL) and spa-
tial error (SPE) models.

The remainder of this paper con-
tinues with some important defini-
tions and theoretical background in-
formation, which is followed by a brief
description of the study area and the
data used to estimate these models.
The models are described in the
methods section, followed by a com-
parison of the performance of each
modelling technique and some con-
cluding remarks.
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Study area and data description

The study area for this research is the
amalgamated City of Hamilton, Ontar-
io, Canada. It is located approximately
75 kilometres southwest of the pro-
vincial capital of Toronto and had a to-
tal population of 693,000 in 2006. Like
many other North American cities dur-
ing the post-World War Il period, Ham-
ilton experienced substantial econom-
ic development and population
growth associated with intense urban
development. Within the past few
decades, Hamilton has been exposed
to suburbanization with greenfield de-
velopment of residential and commer-
cial subdivisions. The suburbanization
process has changed the traditional
roles of the countryside and the city’s
downtown (Maoh, Koronios, & Ka-
naroglou, 2010), with a consequent
impact on appreciation and deprecia-
tion rates in land prices: with the high-
est values but the lowest appreciation
rates in the city’s downtown.

The data used to enable the rela-
tive performance comparison of four
different model specifications within
the City of Hamilton can be catego-
rised into price data and contextual
data. The transaction price data were
acquired from the Land Registry (i.e.
deed transfer) office and included in-
formation about the location, date of
sale, and the nominal sale price for the
population of 87,277 private real es-
tate transactions that occurred in
Hamilton, Ontario, between January
1995 and May 2004. Using a spatial de-
cision support system (Spinney, Ka-
naroglou, & Millward, 2010), a total of
2,524 transactions in vacant land were
extracted from the population of pri-
vate real estate transactions.

Contextual data were acquired to
provide independent variables, stratify
the vacant land market, and adjust
nominal prices. Cadastre (i.e. parcel
fabric) data were acquired from
Teranet Inc. (http://www.teranet.ca) and
were used to derive information about
the total area for each parcel of land
within the study area. Land use data
were acquired from the municipality
(http://www.hamilton.ca) and provided
information primary land use type
(e.g. residential, commercial) for each
parcel of land within the study area.

Using geographic information system
(GIS), the location of municipal water
and sewer infrastructure, also ac-
quired from the municipality, was used
to determine the parcels within the
“serviced” area, while the location of
public schools was used to determine
the distance to each parcel of land in
the study area. Statistics Canada’s
New Housing Price Index (NHPI) in-
cludes independently indexed Land
Price (NHPI-L) information and month-
ly NHPI data for the City of Hamilton
between 1995 and 2003 were down-
loaded from the E-STAT website
(http://estat.statcan.ca), and were used
to provide information about the dy-
namic land market conditions. Statis-
tics Canada’s 2001 census data were
also downloaded from the E-STAT
website and were used to represent
the social and economic attributes af-
fecting urban land values.

Data processing

After formatting and concatenating
the various datasets, the vacant land
sales were stratified into market seg-
ments. Market stratification or market
segmentation is based on the under-
standing that different goods will have
different markets, whereby consumer
preferences and prices are largely di-
versified (Rapkin, Winnick, & Blank,
1953; Grigsby, 1963; Goodman &
Thibodeau, 2003; Wheeler et al., 2014).
The concept of a housing submarket is
based on the appraisal concept of
substitution, and the central notion of
a submarket is that properties should
be close substitutes and not just lo-
cated in the same neighbourhood
(Jones, Leishman, & Watkins, 2005).
While market segmentation can be
used to delineate relatively homoge-
neous market segments according to
either geographical areas (i.e. neigh-
bourhoods) or the physical use of the
property (e.g. residential, commer-
cial), it was used in the current study
to select relatively homogeneous non-
rural residential land uses within the
area serviced by municipal water and
sewer. Furthermore, residential lots
larger than two and a half acres (ap-
proximately 8,094 m?), likely planned
for subdivision, were excluded in or-
der to improve constant quality

among vacant land prices and to ac-
count for diminishing returns to lot
size (see Colwell & Sirmans, 1978).

Market segmentation resulted in
total of 1,751 transactions of urban,
serviced, residential, and vacant land
parcels within the study area between
1995 and 2003. To enable comparison
of land price information from differ-
ent time periods (and different micro
and macro land market conditions)
nominal sale prices were multiplied by
NHPI-L values for each year required
to bring the price information to real
prices that represent land market
conditions in 2003. Using real prices,
the next processing operation was to
remove price outliers.

In order to account for constant
quality among sale prices and to elimi-
nate any extreme values, we first
computed a spatially continuous sur-
face of mean land prices per square
metre using an adaptive kernel.
CrimeStat® Il software (Levine, 2009)
was used to compute an adaptive ker-
nel using 100 m grid cells with a Gauss-
jan functional form and 30 nearest
neighbours, and the mean values were
extracted to each sale point. This local
mean price per square metre was then
divided by the market price per square
metre to compute local ratio values.
Similar to Gatzlaff & Ling (1994) only
those transactions with local ratio val-
ues within three standard deviations
of the overall mean were selected:
leaving 1,640 transactions in vacant
land to enable the comparison of rela-
tive accuracy and fairness of OLS, spa-
tial autoregressive, and ordinary
Kriging models. Before a description
and comparison of the various model
specifications and their respective abil-
ities to incorporate the impacts of lo-
cation into the assessment of urban
land values, however, the independ-
ent variables used in the hedonic price
models are examined.

The traditional mantra used to de-
scribe the three main factors affecting
the value of real estate is “location, lo-
cation, and location” (Britton, Davies,
& Johnson, 1989; Cohen & Coughlin,
2008). Location may be separated into
(i) site factors (e.g. size, shape or con-
figuration, slope, drainage), (ii) situa-
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TABLE 1. Summary statistics of estimation and validation samples

Estimation sample
(n=1,497)

Variable Mean
Real sale price () 74,889
Ln(Real sale price (%)) 11.10
Parcel area (m?) 584
Median income (%) 69,596
Distance to CBD (km) 8.19
Ln(Distance to CBD km)) 2.012
Distance to school (km) 0.648

* Two-tailed significance

tion in space factors (i.e. proximity to
physical (e.g. highways), legal, social
(e.g. schools), land use type (based on
zoning), and economic (e.g. Central
Business District (CBD)) attributes af-
fecting value), and (iii) situation in
time factors. The selection of inde-
pendent variables was partially in-
formed by theory and previous re-
search, but was also based on results
from exploratory data analysis (i.e.
correlation analysis and multicollinear-
ity tests). Site factors are represented
by parcel area, which was measured in
square metres. Situation in space fac-
tors were represented by several in-
dependent variables:

(i) median income in 2001 by census
tract (n =166);

(ii) straight-line distance to nearest
school;

(iii) straight-line distance to (CBD);

(iv) freeway proximity (1 if parcel
within 1500 metres, 0 otherwise);
and

(v) land uses types, which included
two variables: farm land use (1 if
the parcel is located on farm land,
0 otherwise) and row-housing
land use (1 if the parcel is located
on land zoned row-housing, o
otherwise).

Farm parcels here are within city lim-
its. Finally, situation in time was ac-
counted for by temporally adjusting
nominal sale prices into real prices for
vacant land (the dependent variable)
that reflect 2003 land market condi-
tions.

The comparison of model perfor-
mance is primarily based on each
model’s predictive ability, so the 1,640
vacant land transactions were divided
into two randomly sampled groups;

Validation sample

the result is a relatively large estima-
tion sample (i.e. in-sample observa-
tions) and a relatively small validation
sample (i.e. out-of-sample observa-
tions). The estimation sample used to
estimate the different model specifi-
cations contains 1,497 observations
and the sample used to validate those
models has 143 observations. It is im-
portant that the comparison of model
performance is not inexplicably influ-
enced by a poorly selected validation
sample (Case et al., 2004; Paez, Long,
& Farber, 2008), so an independent
samples t-test was used to ensure the
absence of any statistically significant
differences between the estimation
and validation samples (Table 1).

The two samples exhibit similar
means and standard deviations. For
example, the maximum sale price
ranges from $10,000 to over $670,000,
yet the difference in mean sale prices
is only $1,441. The independent sam-
ples t-test results provide further evi-
dence that, despite any apparent dif-
ferences in mean values, none are sig-
nificant. Table 1 provides convincing
evidence that the estimation and vali-
dation samples are reasonably similar
over all the dependent and independ-
ent variables used to estimate the dif-
ferent models.

Methods

The purpose of this section is to de-
scribe the different models used to es-
timate residential land values and the
methods used to compare their rela-
tive performance. Analysis of each
model’s predictive ability will follow in
the results section along with a com-
parison of the accuracy and fairness of
each modelling technique.

Comparison of means

(n=143)

Standard deviation Mean Standard deviation t Sig. *
52,691 73,761 36,954 0.250 0.803

0.45 1.12 0.41 -0.512 0.609

517 546 312 0.873 0.383
10,982 70,330 12,029 -0.757 0.449

3.67 8.04 3.41 0.470 0.639

0.435 1.997 0.440 0.394 0.694
0.393 0.611 0.490 1.052 0.293

As previously mentioned, OLS is
the most commonly used parameter
estimation method for modeling land
values. The OLS model may be repre-
sented using matrix notation as

Y=X6B+¢ 1)

where Y is a (n x 1) vector of observed
sale prices on n parcels of land; X is a
(n x k) vector of site and situation
characteristics for parcels of land; f§ is
a (k x 1) vector of unknown coeffi-
cients; and ¢ is a (n x 1) vector of the
net effect of all the other factors af-
fecting sale prices but omitted from
the model (Bowen et al., 2001). Alt-
hough the observed sale price Y could
be utilized in the OLS model, applying
a log transformation to the price val-
ues (i.e. Ln(Y)) would help address po-
tential heteroscedasticity and will
eliminate the chance of making nega-
tive price prediction. As such, the OLS
model can be rewritten as

Ln(Y)=XB+¢ (2)

Here, the unknown 8 coefficients are
estimated by OLS as

8=(X"X)" X" Ln(Y) (3)

Linear multiple regression of sale pric-
es was initially carried out in SPSS us-
ing a simple additive model and served
as the benchmark against which the
three subsequent models that will be
evaluated.

The OLS model assumes inde-
pendence in the error term &. Howev-
er, more often than not spatial auto-
correlation is likely to be present in
spatial data. Failing to account for spa-
tial autocorrelation in the OLS model
will cause the estimated 8 to be ineffi-
cient. The presence of spatial autocor-
relation in the data can be determined
by estimating the Global Moran’s | sta-
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TABLE 2. Comparison of regression model parameters

oLS SPL

beta p-value beta p-value
Constant 10.311  0.00000 5.660  0.00000
Parcel area* 5.287  0.00000 4.355  0.00000
Median income* 0.053  0.00000 0.017 0.01287
Freeway proximity 0.029 0.03915 0.020 0.10431
Farm land use 0.131 0.00016 0.091  0.00233
Row-housing land use -0.606  0.00000 -0.375  0.00000
Ln(Distance to CBD) 0.043  0.02868 0.013  0.45326
Distance to school 0.050 0.00832 0.006  0.70170
Lag coefficient rho 0.453  0.00000
Lag coefficient lambda
R-square 0.638 0.731
N 1,497 1,497
Standard error 0.271 0.234
Akaike info criterion (AIC) 355.364 -27.502

* Parameter scaled by 10,000

tistic. If the latter is significant then
the null hypothesis of no spatial auto-
correlation is rejected and the tested
variable is said to exhibit spatial auto-
correlation. In order to control the im-
pacts of spatial effects, the multiple
regression OLS model can be extend-
ed into what is known as the spatial
lag model. Typically, spatial effects
could manifest themselves through
the dependent variable Ln(Y) or the
error term &. If the spatial effects are
present in Ln(Y), then the error term &
of the OLS equation (eq. 2) is decom-
posed into a spatially lagged term
pWLN(Y) (calculated as a weighted av-
erage of neighbouring values Ln(Y))
and an independent error term e.
Here, pWLnN(Y) is correlated with the
dependent variable Ln(Y). This treat-
ment to the OLS yields the spatial lag
(SPL) model, which takes the follow-
ing form:

Ln(Y)=X68+pWLn(Y)+€ (4)

Here p is the spatial lag parameter
and W is the (n x n) neighbourhood
matrix of spatial dependence. All oth-
er symbols are as in the OLS model.
The spatial autocorrelation term
pWLn(Y) is added to the linear regres-
sion model in order to capture the
strength of the spatial dependence
among the observations of the de-
pendent variable Ln(Y). We created a
Thiessen polygon layer from the point
representations of the parcels and de-
rived a first order rook contiguity ma-
trix W from these polygons. The rows
of the neighbourhood matrix W sum
to 1, which means that W is row-

standardized. On the other hand, if
the spatial effects are manifested
through the error term e itself, then
this term can be written as the sum of
a spatial dependent term AW, which
captures the spatial autocorrelation
between the neighbouring error terms
& and an independent error term e.
Such treatment gives rise to the spa-
tial error model (SPE), which takes the
following form:

Ln(Y)=X8+AWe +€ (5)

A here is the spatial error parameter.
GeoDa™ software (ver. 1.6.5 11) was
used to estimate the spatial models
using the Maximum Likelihood meth-
od and asymptotic inference (see
Smirnov & Anselin, 2001).

Kriging predicts the value of a var-
iable at a point in space on the basis of
observed values for the variable. Ob-
servations closer to the prediction
point are assigned higher weights
than those further away. Kriging is
based on the assumption that the var-
iable being interpolated can be treat-
ed as a regionalized variable, meaning
it is spread out in space and/or time
(Krige, 1951; Matheron, 1963). There
are relatively few applications of
Kriging in real estate research (e.g.
Dubin, 1998; Des Rosiers et al. 2001;
Case et al.,, 2004; Chica-Olmo, 2007;
Pdez, Long, & Farber, 2008) and even
fewer applications of Kriging models
to land prices (e.g. Shultz, 2007; Tsu-
tsumi, Shimada, & Murakami, 2011; Hu
etal., 2013).

Recall that the impact of location

SPE
beta p-value

10.171  0.00000
4.659  0.00000
0.059  0.00003
0.026 0.33710
0.129  0.00000
-0.541  0.00000
0.098  0.02023
0.074 0.01184
0.676  0.00000

0.766

1,497

0.218

-148.458

on land values may be separated into
absolute location in space, relative lo-
cation in space, and relative location in
time. It is possible to incorporate the
absolute location in space (i.e. parcel
area) into the dependent variable by
using sale price per square metre. It is
important to note that this specifica-
tion of the dependent variable as-
sumes the price of land is directly pro-
portional to the size of the lot. Mean-
while, the relative location in time has
already been incorporated into the
dependent variable by using the NHPI-
L to temporally adjust nominal prices
of historical transactions into real land
prices that represent 2003 land market
conditions. The remaining impact of
location is the relative location in
space, which is embodied in the sale
price, and is thus captured by the
Kriging model.

Based on analysis of trends and
the presence of local stationarity ex-
hibited in the variograms (covariance
models), we chose ordinary Kriging
with local variograms (see Haas, 1990)
for spatial prediction of urban land
values. The software used to perform
Kriging with local variograms is called
VESPER, which is an acronym for Vari-
ogram Estimation and Spatial Predic-
tion with Error, and was developed by
the Australian Centre for Precision Ag-
riculture (Minasny, McBratney, &
Whelan, 2005). The advantage of fit-
ting of a local variogram model stems
from the ability of the Kriging model
to adapt to differences in local spatial
structure over the study area, which
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TABLE 3. Summary statistics and comparison of model prediction performance

Model Mean Median
absolute absolute

error error
OoLS 14,424.0 8,821.8
SPL 12,985.6 8,215.4
SPE 11,946.6 7,019.0
Kriging 15,169.5 11,047.8

should produce more accurate predic-
tions than a global variogram.

Model evaluation

Evaluating the relative performance of
models begins with a comparison of
parameter estimates for the OLS and
spatial autoregressive (i.e. SPL and
SPE) models, followed by an evalua-
tion of the predictive accuracy of each
model, including the Kriging model.
Predictive accuracy is assessed by
comparing predicted values with the
observed values in the validation sam-
ple. The predictive accuracy of each
model specification is also evaluated
using sales ratios, which provide a sta-
tistical measure of how close the mar-
ket value is to market price. Market
price is the amount actually paid in a
particular transaction, while market
value is a hypothetical or estimated
sale price that would result from care-
ful consideration by the buyer and
seller of all data, with primary reliance
on those data that reflect the actions
of responsible, prudent buyers and
sellers under conditions of a fair sale.
Standard sales ratio study metrics are
used to evaluate the accuracy and
fairness of the land value estimates
from the three different model speci-
fications.

The purpose of this section is to
compare the results of the benchmark
OLS model with the spatial auto-
regressive and Kriging models. It is
important to reiterate that the objec-
tive of this research is to compare the
relative performance of four statistical
models. The comparison first exam-
ines the model parameters then exam-
ines the performance of the different
model specifications in terms of out-
of-sample predictive accuracy.

A comparison of model parame-
ters for the OLS and maximum likeli-

R’ Predictions within
10% of validation
price
0.775 32.9
0.815 45.5
0.793 49.7
0.769 32.9

hood SPL and SPE parameter estima-
tion methods is provided in Table 2,
and illustrates relatively stable coeffi-
cients for the independent variables
used to explain vacant land prices.

We looked for any evidence of
multicollinearity among our independ-
ent variables. The correlation between
most pairs of variables was weak; un-
der 0.20. The only two variables that
showed some  affiliation  were
Ln[Distance to CBD] and Median in-
come; correlation 0.52. However, all
the estimated coefficients meet our a
priori expectation in terms of their ex-
pected signs. According to the OLS
model in Table 2, larger land parcels
have higher values, other things being
equal. Also, parcels within 1500 meters
from a freeway are more valuable
compared to parcels outside that dis-
tance range. Likewise, parcels in areas
with higher median income have high-
er values. In terms of the effect of land
use type, parcels located on farmland
use are more valuable while par-
celslocated on land designated for
row houses are less valuable, other
things being equal. As for proximity
measures, the estimates suggest that
parcels in locations far away from CBD
or schools are more valuable.

While all coefficients are signifi-
cant in the OLS model, the coefficients
for distance to school and distance to
CBD (i.e. Ln(Distance to CBD))have
become insignificant in the SPL model,
which illustrates the effect that spatial
autocorrelation can have on OLS esti-
mates (see Anselin, 2004). Likewise,
the coefficient for Freeway Proximity
has lost its significance in the SPE
model. The R-squared values, although
not directly comparable due to the
manner in which they are calculated,
represent the proportion of the varia-
tion of vacant land sale prices that is
accounted for by each model and are

Predictions within
20% of validation

Predictions within
30% of validation

price price
67.8 83.9
70.6 83.9
741 86.0
58.7 76.9

remarkably similar, especially for the
spatial autoregressive models, and
relatively high. The standard error of
the estimate indicates the extent to
which the estimated sale prices vary
from their actual values, and the val-
ues are remarkably similar across the
three models, but slightly improved
for the SPE model. In a similar vein,
the SPE model has the lowest AIC val-
ue among the three regression models
suggesting that it is the best model in
terms of the trade-off between its
goodness-of-fit and complexity.

Before running the autoregressive
models, spatial autocorrelation tests
via the Global Moran’s | statistic were
performed in GeoDa. Moran’s [ statis-
tic for Ln(Y) was estimated to the val-
ue of 0.562 (p-value = 0.001, z-value =
36.51), which suggests the presence of
spatial autocorrelation in Ln(Y). Like-
wise, Moran’s | statistic for the errors &
of the OLS model shown in eq. 2 was
also estimated to the value of 0.400
(p-value = 0.001, z-value = 25.68).
which is also indicative of spatial auto-
correlation in the obtained OLS errors.
The existence of spatial autocorrela-
tion in Ln(Y) and ¢ justify the use of
spatial autoregressive models to con-
trol for any potential estimation bias in
the OLS coefficients. The significance
of the lag parameters p and 1 in the
SPL and SPE models is indicative that
the effects of spatial autocorrelation
in the dependent variable Ln(Y) and
the errors ¢ have been controlled for
in the two models, respectively. An
examination of the estimated coeffi-
cients indicates that the use of the
spatial lag term pWLn(Y) in the SPL
model helped reduce the bias in the
estimated OLS coefficients. Conse-
quently, the SPL coefficients are all
smaller in terms of their magnitude
when compared to the OLS coeffi-
cients. The same could be said about
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TABLE 4. Comparison of sales ratios and fairness

Statistic OLS
Count of observations 1,497
Total appraised value 110,693,492
Total sale price 112,109,180
Mean appraised value 73,944
Mean sale price 74,889
Mean ratio 1.041
Median ratio 1.010
Weighted mean ratio 0.987
Price-related differential (PRD) 1.054
Coefficient of dispersion (COD) 0.200

the coefficients of the SPE model.

Comparison of predictive accuracy
The performance of these models is il-
lustrated in Table 3 using summary
statistics and comparative analysis of
predictive accuracy that are based on
the difference between predicted val-
ues from the estimation sample and
the observed values of the validation
sample.

The mean absolute error (MAE)
indicates an increase in model perfor-
mance for the SPE model over the
other models, but the Kriging model
has the highest MAE. Interestingly, the
OLS model has a relatively high MAE
compared to the SPE and SPL models,
placing it close to the Kriging MAE val-
ue. Since the median is less affected
by extreme values, the International
Association of Assessing Officers
(IAAO) generally prefer the median as
the measure of central tendency for
monitoring appraisal performance.
The median absolute error exhibits a
similar pattern as the mean absolute
error, with SPE exhibiting the lowest
median absolute error. However, the
OLS median absolute error became
relatively smaller when compared to
the SPL and SPE models. The R? value
represents the squared Pearson corre-
lation coefficients between the pre-
dicted and observed sale prices in the
validation sample. The SPL model has
the highest R’?, while the OLS and
Kriging models are only marginally in-
ferior. The SPE model has a very simi-
lar R*like the SPL.

The last three columns in Table 3
represent the proportion of estimated
sale prices that are within 10, 20, and
30 percent of the observed sale prices

SPL SPE Kriging
1,497 1,497 1,497
110,411,642 107,431,640 118,458,760
112,109,180 112,109,180 112,109,180
73,755 71,765 79,131
74,889 74,889 74,889
1.038 1.032 1.072
0.992 1.005 0.959
0.985 0.958 1.057
1.054 1.077 1.015
0.198 0.202 0.251

in the validation sample. For example,
49.7 percent of the prices estimated
using the SPE model are within 10 per-
cent of the observed sale prices in the
validation sample, compared to on-
ly32.9 percent for the OLS and Kriging
models, and 45.5 percent for the SPL
model. Overall, the Kriging model has
the least predictive accuracy at all lev-
els. However, the predictive accuracy
of the SPE model retains its superiority
when compared to the OLS model
within the 20 and 30 percent of the
observed sale prices, respectively. This
is partly due to the reduction in esti-
mation bias through the spatial lag pa-
rameter in the SPE model. The predic-
tive accuracy of the SPL model is supe-
rior to the OLS model but not as re-
markable as the SPE model. Typically,
in the presence of strong spatial auto-
correlation, it is likely that the spatial
regression model will significantly
outperform the OLS model, which is
the case as shown in Table 3.

Comparison of fairness

Fairness is determined by analysis of
sales ratios, which are simply quo-
tients from market value divided by
market price, using the estimation
sample presented in Table 4. The de-
sired sales ratio is 1.00, which means
the mass appraisal model was able to
accurately predict the within-sample
prices. However, a sales ratio of 1.00 is
unlikely, so the 2007 Standard on Ra-
tio Studies set by the International As-
sociation of Assessing Officers (IAAO)
indicate that a sales ratio between
0.90 and 1.10 are considered accepta-
ble. We used assessment ratios, coef-
ficient of dispersion (COD), and price-
related differential (PRD) values to
evaluate each model’s respective abil-

ity to produce fair estimates of mar-
ket value.

According to the mean, median,
and weighted mean ratios listed in
Table 4, all models generated esti-
mates of vacant land values that are
considered ‘“‘acceptable” by IAAO
standards. However, the overall rati-
os do not provide any indication of
uniformity or fairness. The most im-
portant measure of assessment uni-
formity is the COD, which represents
the average percentage deviation

from the median ratio and can be
loosely interpreted as the average er-
ror, but it does not depend on the as-
sumption that the ratios are normally
distributed. According to IAAO stand-
ards, COD values for vacant land
should not exceed 20.0 percent. COD
is calculated by dividing the average of
the “absolute deviation of ratios
about the median” by the median ra-
tio. Both the OLS and SPE models are
close to meeting IAAO standards for
COD while the SPL is below the de-
fined threshold. Another measure of
uniformity is the price-related differ-
ential (PRD), which is used to measure
uniformity between high- and low-
value properties and should be be-
tween 0.98 and 1.03 to demonstrate
vertical equity (IAAO, 2007). The PRD
is calculated by dividing the mean ratio
by the weighted mean ratio. Accord-
ing to the results in Table 4, only the
Kriging model was able to produce es-
timates of vacant land prices that
meet IAAO standards for PRD, which
suggests that the Kriging model is bet-
ter able to incorporate the differences
between high and low value land par-
cels.

Conclusion

Land value information is necessary in
the private sector for lending and in-
vestment decisions, and is required in
the public sector for land use zoning,
eminent domain, and, of course,
property taxes. The objective of this
research was to compare the relative
performance of OLS, spatial auto-
regressive, and ordinary Kriging mod-
els insofar as the accuracy and fairness
of the estimates of land values pro-
duced. The intention was to compare
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simple model specifications in order to
focus on their respective ability to
produce accurate and fair estimates of
land values, primarily as a function of
their ability to incorporate the impact
of location. This research is not, how-
ever, without its limitations. A simple
linear specification was chosen for the
functional form of the OLS and spatial
autoregressive models even though
we recognise the relationships are
likely more complex. We also included
sales data over a nine-year period; alt-
hough nominal prices were adjusted
to real prices representing land market
conditions in 2003, markets change
and neighbourhoods appreciate and
depreciate at different rates within
the city.

Despite the limitations, we con-
tend that the Kriging model per-
formed very well, especially consider-
ing its specification did not incorpo-
rate any neighbourhood attributes.
However, results clearly indicate that
multivariate regressions have signifi-
cant potential to outperform spatial
interpolation of urban land values, and
there appears to be convincing evi-
dence for spatial error (SPE) models to
improve the accuracy of hedonic price
models (Table 3) when specified
properly. On the other hand, insofar as
each model’s respective ability to ac-
count for differences between high
and low-value lots, only the estimates
from the Kriging model meet IAAO
standards for vertical equity (Table 4).

Despite having the poorest predic-
tive accuracy of the models tested, the
Kriging model highlighted the ad-
vantages of explicitly incorporating lo-
cal spatial dependence and spatial
heterogeneity into the model struc-
ture, especially when the dependent
variable contains measurement errors.
Furthermore, the specification of the
Kriging model is hampered by the
specification of the dependent varia-
ble, because the relationship between
price and area is almost certainly not
linear. A better specification of the
dependent variable in the Kriging
model, such as a different specifica-
tion between price and area, or possi-
bly using price per street frontage,
could improve the overall perfor-
mance of the Kriging model, especially

in areas with highly variable lot
depths. Furthermore, it is possible to
incorporate a covariate into the
Kriging model by using cokriging,
which would invariably improve model
performance. Overall, however, these
results suggest that perhaps other
spatial analytic techniques need to be
adopted, such as generalised least
squares or geographically weighted
regression, that can take advantage of
both the spatial distribution of land
prices plus the ability to decompose
vacant land values into marginal pric-
es.
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